

PCR/PIR

Granulation

Key Technology

Complete Formulation

Engineering Plastics

PC/ABS Nano Alloy Modified Material

Formula: 1. PC off-grade 58%

2. ABS clean scrap 40%

3. 3300 BK 1%

4. GY-9090 1%

5. **YT-886 0.4 phr**

PC off-grade

ABS clean scrap

3300 BK

PC/ABS alloy modified material

PC/ABS Nano Alloy Modified Material

Test Report

Material: PC/ABS

	Density	Melt Flow	Impact 2.75	Impact 7.5	Tensile		
		260° C 2.16 kg	IZOD	CHARPY	Max Load	Elongation	Tensile Strength
Unit	g/cm³	g/10 mins.	kJ/m²	kJ/m²	N	mm.	MPa
1	1.10	22	32	45	2230	14	223
2	1.10	22	33	42	2226	16	222
3	1.11	21	34	45	2220	15	222
4	1.11		32	46	2234	11	223
5	1.10		38	43	2225	15	222
Mean	1.10	22	34	44	2227	14	222

PBT 301A Nano Fireproof Modified Material

Formula: 1. PBT + 30%GF fireproof scrap 99.5%

2. 3300 BK 0.5%

3. **YT-886 0.6 phr**

4. YT-1818 0.15 phr

5. Glass fiber reinforcement

PBT + 30%GF fireproof scrap

3300 BK

PBT + 30%GF Fireproof Modified Material

FR engineering plastics granulation Data comparison

Production Capacity (12 hrs)

Before 4T/After 4.6T **15%**

Temperature

Before 250°C/After 230°C
20°C

Defect Rate

Before 10%/After 3% **\(\sqrt{7}\%**

Power Consumption USD / ton

Before 0.06/After 0.04 **\J33%**

Labor Wage USD/ton

Before 68/After 50

↓26%

Selling Price
USD/ton

Before 800/After 1,200 **↑50%**

PBT 301A Nano Fireproof Modified Material

Scraps

Finished Products

PET 5050 CBK Nano Modified Material

Formula: 1. PET scraps 85.2%

2. Glass fiber 14%

3. 2200 BK 0.8%

4. **YT-886** 0.6 phr

5. **YT-1818 0.15 phr**

Scrap

Finished Products

PET 5050 CBK Nano Modified Material

Nylon Nano Modified Material

Scraps

PA silk

PA fabric

PA ribbon

PA webbing

Turning Nylon Scrap Around

Before

Various complicated and inferior scraps

Pelletizing failure, unstable production

After

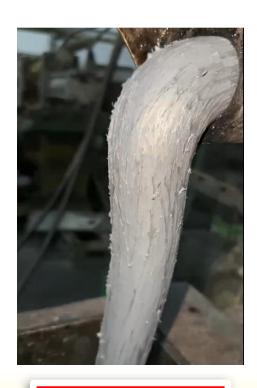
Complete formulation

YT-886 0.2 phr + YT-1818 0.2 phr

- 1. Stable production
- 2. Standard quality
- 3. Market acceptance

Nylon Nano Modified Material

Finished Products



Commodity Plastics

Complete compounding

Before

After

Reduce processing temperature



Before

↓ 10°C

Nano-effect

- * Processing setting 245°C, temperature before adding additives is 256°C, which is considered an appropriate machine. In other words, if temperature lower than 245°C, the machine needs to be adjusted. Most manufacturers do not know this part.
- * After adding additives, temperature turns up to 284°C, which is due to the increase in thermal energy caused by nano-effect. The processing temperature can be adjusted to 220°C, production will be more stable.

Improve production speed

After

Color rendering, glossy

Before

After

Eliminate odor of recycled materials 60% ~ 100%

Eliminate unmelted resin spillage

Effectiveness 7a

Solid pellets

Before

After

Effectiveness **7b**

Solid pellets

Before - brittle

After - tough

Maintain Physical Properties

Stable production, physical properties maintained >39%

Before

After

* Trying to make up for physical properties loss 39% by adding 3~5% of impact modifier, is an unnecessary and painful increase in cost!

53 years of industry experience, 6 years of integration we found that there is a common fact in the industry

Improper processing!

Stop loss is the beginning of profit!